Roll No.

c) Deline Post-Insural Viv

576311(76)/676311(76)

M. B. A. (Third Semester) Examination, Nov.-Dec. 2021

(New Scheme)

(Specialization: General)

(Management Branch)

OPTIMIZATION METHODS

s log fand Time Allowed : Three hours terrains av.

Maximum Marks : 80 ich so students

E 38 2000 Minimum Pass Marks: 32 2 11 hough

Note: All units questions are compulsory. Attempt any two of each unit.

affearf of Eg of E must be used and the

Unit-I Any two

over yor?

1. (a) List the process of optimisation method.

(b) Define Degeneracy condition in LPP (1) to be good.

(c) Define Post-optimality.

2. Solve the following LPP using simplex method

Max
$$Z = 300 x_1 + 200 x_2$$

Subject to constraints

$$2x_1 + x_2 \le 60$$

 $x_1 \le 25$

 $x_2 \le 35$

where $x_1, x_2 \ge 0$

8

3. An animal feed company must produce 200 kg of a mixture consisting of ingredients x₁ and x₂. The ingredients x₁ costs Rs. 3 per kg and x₂ costs Rs. 5 per kg. Not more than 80 kg of x₁ can be used and at least 60 kg of x₂ must be used. Find the minimum cost mixture.

Unit-II

Any two

 A company manufacturing air coolers has two plants located at Bombay and Calcutta with a weekly capacity of 200 units and 100 units respectively. The company supplies air coolers to its 4 show rooms situated at Ranchi, Delhi, Lucknow and Kanpur, which have a demand of 75, 100, 100 and 30 units respectively. The cost per unit (in Rs.) is shown in the following table. 8

Plants	Ranchi	Delhi	Lucknow	Kanpur
Bombay	y 90	90	100	100
Calcutta	a 50	70	130	85

Plan the production programme so as to minimise, the total cost of transportation.

2. Find optimal solution for the problem.

Cost Matrix

	P	I Q 8	R	Supply
A	4	18	8 -	∂ 7 6 ⊥
В	16	24	16	782
C	8	16	240	77
mand	72	102	41	

Find initial basic feasible solution using LCM.

mad	W	X	y	Z	Demand
A	6	6	11	15	80
В	4	6	10.	12	120

576311(76)/676311(76)

ABC on lines operating seven day

PTO

576311(76)/676311(76)

17

	8	Q.	[4	1		
VIIII C	6	4	7	6	150	m MCRo
In heDub	. 4	10	14	14	65	
E	8	8	7 .	9	85	
Supply	100	120	120	80	Otto Jer h	
		THE TAI	2111/2/212		July 18 1 Firth	

Unit-III

Any two

1. Five men are available to do five different jobs. From the past records the time (in hrs) that each man takes to do a job is know and is given in the following matrix. 8 Jobs "Orlationament to each Intuit

Men	Indelin	III IV V	
A	2 9	2 1 7 1	
В	6 8	7 6 1	
С	4 6	5 3 1	
D	4 2	7 3 3 5 1	
Е	5 13	9 5 1	

2. ABC air lines operating seven days a week has given the following time table. Crews must have a minimum lay-over of 5 hours between flights. Obtain the pairing flights that minimise lay-over time away from time For any given pairing the crew will be based at the city that results the smallest lay-over.

Rai	our-Nagpur	Nagpur-Raipur			
Flight No.	Departure	Arrival	Flights	Departure	Arrival
\mathbf{A}_{1}	6 AM	8 AM	B_1	8 AM	10 AM
A_2	8 AM	10 AM	B ₂	9 AM	11 AM
A_3	2 PM	4 PM	B_3	2 PM	4 PM
A_4	8 PM	10 PM	B ₄	7 PM	9 P M

3. A salesman has to visit fair cities A, B, C and D. The distances (in hundred km) between the four cities are as follows:

	V T	1,4	То		Winxin.
	From	À	В	C	In/D:
	A	_	4	7	3
	В	4	arr/Ouez	6	3
1	С	7	6	574	7
	D	3	3	7	-

If the salesman start from city A and has to come back city A, which route he select so that total distance travelled by him is minimised?

Unit-IV

Any two

1. (a) What is Queuing theory? In what areas of management can it be applied successfully? Give some examples.

3

- (b) Write assumptions of MM1/FCFS/∞.
- (c) Explain general structure of Queuing system.
- 2. On a national highway automobiles arrive for toll tax payment at an average rate of 3 in 5 minutes, according to poission probability law. The attendent receives the tax in an average time of one minute per customer. The services time is exponential distributed. Find:
 - (a) The probability of arrivals of 0 through 5 customers in a 10-minutes interval.
 - (b) The average time that the attendant is free in his 8-hour duty time.
 - (c) The expected number of customer in the system.
 - (d) The expected time of the customer in the system.
- 3. A company has six jobs which go through three machine X, Y and Z in the order XYZ. The processing time in minutes for each job on each machine is as follows:

	Machine	5.51		Jobs			13.
		1	2	3	4	5	6
9	X	18	12	29	35	43	37
1	Y	7	12	11	2	6	12
	Z	19	12	23	47	28	36

What should be the sequence of the jobs?

576311(76)/676311(76)

Unit-Y

[7]

Any two

1. Wha is the difference between CPM and PERT.

2. Tasks A,B,C,D,, H, I constitute a project.

The precedence relationships are: A < D; A < E; B < F; D < F; C < G; C < H; F < I; G < I

			1 141	T ATTEN	TANK DEL	7000		7.6411.0	
Activity	1-2	1–4	1-3	2-4	2–6	4-5	3-5	3–6	5-6
	A	В	С	D	E	i F bs	G	H	II
Time	8	10	83	10	16	17	18	914	9

Find:

- (i) Draw Network Diagram and critical path
- (ii) Calculate E_s , E_F
- (iii) Calculate L_S , L_F
- (iv) Total float

8

3. The time estimates (in weeks) for the activities of a PERT network are given below:

Activity	t_0	t_{m}	t_p
1-2	1	1	7
1-3	1	4	7
1-4	2	2	8
2-5	1	1	1

OWN THE	3-5	2	5	14			
	5-6	/(2)	5	8	1		
	5-6	3	6	15			

Find trop a printer a pri

- (i) Draw Network diagram and critical path. 2019 of
- (ii) What is the probability that the project will be completed no more than 4 weeks (for week) later than expected time.
- (iii) The probability that project will complete in 20 weeks.

(i) Draw Network Diagram and critical eath

(ii) Calculate $E_{g} | E_{F} |$ and Φ which is the lands quantum 1

The time estimates (in weeks) for the activities of a

Activity $t_0 = t_m = t_p = 0$ on an $t_p = 0$ of $t_0 = t_p = 0$ of

3681

576311(76)/676311(76)

8